
Organic &
Biomolecular
Chemistry

Dynamic Article Links

Cite this: Org. Biomol. Chem., 2012, 10, 4571

www.rsc.org/obc PAPER

Multi-component anion relay cascade of 1-acetylcyclopropanecarboxamides,
aldehydes and acrylonitrile: access to biscyanoethylated furo[3,2-c]-
pyridinones†
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A highly efficient multi-component anion relay cascade reaction based on 1-
acetylcyclopropanecarboxamides, aldehydes and acrylonitrile has been developed, which provides
strategically novel and atom-economic access to biologically important biscyanoethylated furo[3,2-c]-
pyridinones. In this one-pot transformation, up to five bonds (one C–N, one C–O and three C–C bonds)
were constructed.

Introduction

Furo[3,2-c]pyridinone alkaloids are widespread among the Ruta-
ceae family of plants1 and display important biological activities
such as antifungal,2 antibiotic2 and antipsychotic properties,3

HIV protease inhibitors4 and K-Receptor Agonists5 (Scheme 1).
Synthetic approaches for the construction of this kind of hetero-
cycle have been reported,6 including oxidative,6a or photo-
induced cycloaddition6b,c of 4-hydroxypyridin-2(1H)-ones with
olefins, condensation of pyridone with ethyl pyruvate and p-
chlorothiophenol, reduction, and cyclization,6d rhodium-
mediated dipolar cycloaddition,6e palladium(0)-catalyzed
Suzuki6f or Sonogashira6g coupling, and other methods such as
multi-component reactions.6h Since most methods may suffer

from tedious steps, low yields and poor regioselectivity, the
development of new and efficient synthetic methods toward
highly functionalized furo[3,2-c]pyridinones is still required.

Recently, Dong et al. reported an efficient route to 2,3-dihy-
drofuro[3,2-c]pyridin-4(5H)-ones via a Vilsmeier-type reaction
from 1-aminoalkenoyl-1-carbamoylcyclopropanes in the pres-
ence of Tf2O in DMF.7 In our research on the synthetic potential
of β-ketoamides bearing both electrophilic and nucleophilic
centers toward various carbo- and heterocycles,8 we developed
facile and straightforward protocols to construct furo[3,2-c]pyri-
dinones from 1-alkenoylcyclopropanecarboxamides via either an
aza-oxy-carbanion relay cascade8a or halonium-initiated electro-
philic cascades.8b Anion relay chemistry (ARC) has been
demonstrated as an effective tactic for diversity-oriented syn-
thesis of architecturally complex natural and unnatural products.9

In our continued work, we aimed to further exploit the prep-
aration of diversely functionalized furo[3,2-c]pyridinones
through a multi-component anion relay cascade reaction
(Scheme 2). Multi-component reactions have been refined in
recent years as powerful and useful tools in synthetic chemistry
and have attracted increasing attention due to the advantages of
greater efficiency, atom economy, and structural diversity and
complexity.10 The development of multi-component reactions
based on appropriately substituted cyclopropanes has been
reported by us8e and several other research groups.11 In the

Scheme 1 Naturally occurring alkaloids containing furo[3,2-c]pyridi-
none Motif.

Scheme 2 Multi-component cascade reaction leading to highly substi-
tuted furo[3,2-c]pyridinones.
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present reaction, a mixture of 1-acetylcyclopropanecarboxa-
mides, aldehydes and acrylonitrile was subjected to the one-pot
reaction, in which acrylonitrile was selected as the external elec-
trophile (i.e., anion acceptor). Acrylonitrile, as a useful synthon,
has found wide application in organic synthesis.12 As a result of
the research, a multi-component anion relay cascade was estab-
lished and highly functionalized biscyanoethylated furo[3,2-c]-
pyridinones were efficiently synthesized.

Results and discussion

Initially, the model reaction of 1-acetyl-N-phenylcyclopropane-
carboxamide 1a (1.0 mmol), 4-methylbenzaldehyde 2a
(1.1 mmol) and acrylonitrile (1.2 mmol) in DMSO (4.0 mL) was
examined under basic conditions (Table 1).13 To our surprise,
biscyanoethylated furo[3,2-c]pyridinone 3a (instead of the
monocyanoethylated counterpart), was obtained in 39% yield
(Table 1, entry 1). The structure of 3a was confirmed by the X-
ray single-crystal diffraction (Fig. 1).14 Encouraged by this pre-
liminary result, we increased the amount of acrylonitrile to 2.5
equiv under the same conditions. Gratifyingly, the yield of 3a
was significantly improved to 88% (Table 1, entry 2). A further
increase in the amount of acrylonitrile to 5.0 equiv was not
required (Table 1, entry 3). Either cutting down the amount of
NaH to 1.2 equiv (Table 1, entry 4)15 or lowering the tempera-
ture to 60 °C (Table 1, entry 5) led to decreased yield. Reactions
performed in THF or DMF gave complicated mixtures (Table 1,
entries 6 and 7). Except NaH, other bases like t-BuONa and
t-BuOK, were also tested, but resulted in low yields (Table 1,
entries 8 and 9).

Under the optimized conditions, a range of multi-component
reactions were carried out with various doubly-EWG activated
substrates 1 and aldehydes 2 (Table 2). The reactions proceeded
smoothly to afford the corresponding highly substituted furo[3,2-
c]pyridinones 3 in good to excellent yields. The aryl substituents
Ar on the N atom of substrates 1 may be either electron-rich or

electron-deficient (Table 2, entries 1–4).16 The scope of alde-
hydes 2 was also broad, including benzaldehyde (Table 2, entry
5), electron-rich aryl aldehydes (Table 2, entries 6 and 7), elec-
tron-deficient aryl aldehydes (Table 2, entries 8 and 9), hetero-
aryl aldehydes (Table 2, entries 11 and 12), and an alkenyl
aldehyde (Table 2, entry 14). However, multi-component reac-
tions with (hetero)arylaldehydes like 2-nitrobenzaldehyde and
pyridine-4-carboxyaldehyde containing strong electron-with-
drawing groups did not give satisfactory results (Table 2, entries
10 and 13).17 The reaction with alkylaldehydes like pivalalde-
hyde also gave a complex mixture (Table 2, entry 15). All pro-
ducts were characterized on the basis of the spectral and
analytical data (see the ESI†).18

In an isolated experiment, the reaction of 1a (1.0 mmol), 2a
(1.1 equiv) and acrylonitrile (2.5 equiv) with NaH (2.5 equiv) as
the base in DMSO (4.0 mL) at 80 °C was quenched with water
after proceeding for 1 h. As a result, 3-(4,8-dioxo-5-phenyl-6-(p-
tolyl)-5-azaspiro[2.5]octan-7-yl)propanenitrile 4 was isolated in
67% yield, along with the formation of furo[3,2-c]pyridinone 3a

Fig. 1 ORTEP drawing of 3a.

Table 2 Synthesis of biscyanoethylated furo[3,2-c]pyridinonesa

Entry Ar R 3 Yieldb (%)

1 Ph 4-MeC6H4 3a 88
2 4-ClC6H4 4-MeC6H4 3b 82
3 4-OMeC6H4 4-MeC6H4 3c 88
4 2-Cl-4-OMeC6H3 4-MeC6H4 3d 86
5 Ph Ph 3e 76
6 Ph 2-MeC6H4 3f 85
7 Ph 3,4-O2CH2C6H3 3g 92
8 Ph 4-ClC6H4 3h 78
9 Ph 2-ClC6H4 3i 81
10 Ph 2-NO2C6H4 3j —c

11 Ph 2-Furyl 3k 85
12 Ph 2-Thienyl 3l 93
13 Ph 4-Py 3m —c

14 Ph PhCHvCH 3n 90
15 Ph t-Bu 3o —c

aReactions were carried out with 1 (1.0 mmol), 2 (1.1 equiv),
acrylonitrile (2.5 equiv) in the presence of NaH (2.5 equiv) in DMSO
(4.0 mL) at 80 °C for 5 h. b Isolated yield. cComplex mixture was
observed.

Table 1 Optimization of the reaction conditionsa

Entry Base (equiv)
Acrylonitrile
(equiv)

Solvent
(mL) T (°C)

Yieldb

(%)

1 NaH (2.5) 1.2 DMSO 80 39
2 NaH (2.5) 2.5 DMSO 80 88
3 NaH (2.5) 5.0 DMSO 80 87
4 NaH (1.2) 2.5 DMSO 80 55
5 NaH (2.5) 2.5 DMSO 60 23
6 NaH (2.5) 2.5 THF 80 —
7 NaH (2.5) 2.5 DMF 80 —
8 t-BuONa (2.2) 2.5 DMSO 80 15
9 t-BuOK (2.2) 2.5 DMSO 80 45

aReactions were carried out on a 1.0 mmol scale in 4.0 mL of solvent
with 1a (1.0 equiv) and 2a (1.1 equiv). b Isolated yield.
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in 13% yield. (eqn (1)). The result helps one to answer the ques-
tion of the biscyanoethylation sequence involved in the reaction.

ð1Þ

Based on all the results described above and our previous
research,8a a possible mechanism for the formation of 3 is pro-
posed, as depicted in Scheme 3. The overall transformation may
involve the following steps: aldol addition/aza-Michael addition/
Michael addition/1,3-H shift19/ring opening of cyclopropane and
recyclization20/Michael addition. The anion relay process can be
briefly described as amide anion → carbanion → enolate anion
→ carbanion. Final electrophile trapping terminates the relay.

Conclusion

In conclusion, we have developed an efficient multi-component
anion relay cascade to construct biscyanoethylated furo[3,2-c]-
pyridinones. The one-pot process involves aldol condensation,
multiple Michael additions, 1,3-H shift, ring opening of cyclo-
propane and recyclization, in which up to five bonds (one C–N,
one C–O and three C–C bonds21,22) were constructed in an
atom-economic manner. Further research on multi-component
cascade reactions about doubly-EWG activated cyclopropanes is
currently under investigation in our laboratory.

Experimental

General methods

All reagents were purchased from commercial sources and used
without treatment, unless otherwise indicated. The products were
purified by column chromatography over silica gel. 1H NMR
and 13C NMR spectra were recorded at 25 °C and TMS as
internal standard.

Typical experimental procedure for the synthesis of
furo[3,2-c]pyridine

General procedure for the preparation of 3 (3a as an example):
To the stirred mixture of 1a (203 mg, 1.0 mmol) in DMSO
(4 mL) was added 2a (0.12 mL, 1.1 mmol), acrylonitrile
(0.16 mL, 2.5 mmol), and NaH (70%) (86 mg, 2.5 mmol) in one
portion at 80 °C. The starting material 1a was consumed as indi-
cated by TLC after 5 h, the reaction mixture was cooled to room
temperature and poured into water and then extracted with
CH2Cl2 (3 × 10 mL). The combined organic phase was washed
with water (3 × 10 mL), dried over anhydrous MgSO4, filtered
and concentrated under reduced pressure. The crude product was
purified by flash chromatography (silica gel, petroleum ether:
diethyl ether = 2 : 1) to give 3a (362 mg, 88%).

Characterization data for furo[3,2-c]pyridine

3,3′-(4-Oxo-5-phenyl-6-(p-tolyl)-2,3,4,5,6,7-hexahydrofuro-
[3,2-c]pyridine-7,7-diyl)dipropanenitrile (3a). White solid. m.p.
106–108 °C. 1H NMR (500 MHz, CDCl3): δ = 1.53–1.58 (m,
1H), 1.81–1.84 (m, 1H), 1.87–1.90 (m, 1H), 2.35 (s, 3H),
2.51–2.58 (m, 3H), 3.07–3.14 (m, 2H), 4.43 (s, 1H), 4.66 (m,
2H), 6.94–6.96 (d, J = 7.5 Hz, 2H), 7.08–7.10 (d, J = 7.5 Hz,
2H), 7.13–7.19 (m, 3H), 7.24–7.26 (m, 2H); 13C NMR (CDCl3,
125 MHz): δ = 12.0, 12.9, 21.0, 27.1, 27.2, 33.3, 43.0, 72.7,
73.3, 107.0, 118.8, 119.0, 126.8, 127.0, 127.9, 128.9, 129.9,
133.4, 139.1, 141.3, 163.2, 166.5; MS calcd m/z 411.2, found
412.2 [(M + 1)]+. Anal. calcd for C26H25N3O2: C, 75.89; H,
6.12; N, 10.21; Found: C, 76.04; H, 6.14; N, 10.28.

3,3′-(5-(4-Chlorophenyl)-4-oxo-6-(p-tolyl)-2,3,4,5,6,7-hexahy-
drofuro[3,2-c]pyridine-7,7-diyl)dipropanenitrile (3b). White
solid. m.p. 188–190 °C. 1H NMR (500 MHz, CDCl3): δ =
1.55–1.59 (m, 1H), 1.81–1.84 (m, 1H), 1.88–1.93 (m, 1H),
2.06–2.15 (m, 2H), 2.35 (s, 3H), 2.48–2.58 (m, 3H), 3.07–3.13
(m, 2H), 4.41 (s, 1H), 4.67–4.74 (m, 2H), 6.88–6.90 (d, J = 9.0
Hz, 2H), 7.06–7.08 (d, J = 7.5 Hz, 2H), 7.14–7.15 (d, J = 7.0
Hz, 2H), 7.20–7.22 (d, J = 8.5 Hz, 2H); 13C NMR (CDCl3,
125 MHz): δ = 12.2, 13.1, 21.1, 27.3, 27.4, 33.5, 43.1, 73.0,
73.5, 107.2, 118.5, 118.8, 128.0, 128.4, 129.2, 130.1, 132.5,
133.1, 139.6, 139.8, 163.3, 166.8. MS calcd m/z 445.2, found
446.2 [(M + 1)]+. Anal. calcd for C26H24Cl N3O2: C, 70.03; H,
5.42; N, 9.42; Found: C, 70.21; H, 5.47; N, 9.51.

3,3′-(5-(4-Methoxyphenyl)-4-oxo-6-(p-tolyl)-2,3,4,5,6,7-hexa-
hydrofuro[3,2-c]pyridine-7,7-diyl)dipropanenitrile (3c). White
solid. m.p. 185–187 °C. 1H NMR (500 MHz, CDCl3): δ =
1.56–1.63 (m, 1H), 1.79–1.83 (m, 1H), 1.86–1.89 (m, 1H),
2.05–2.13 (m, 2H), 2.35 (s, 3H), 3.06–3.13 (m, 2H), 3.74 (s,

Scheme 3 Possible mechanism for the multi-component anion relay
cascade reaction.
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3H), 4.56 (s, 1H), 4.65–4.72 (m, 2H), 6.75–6.77 (m, 2H),
6.82–6.84 (m, 2H), 7.09 (s, 2H), 7.12–7.14 (d, J = 8.0 Hz, 2H);
13C NMR (CDCl3, 125 MHz): δ = 12.2, 13.1, 21.1, 27.3, 27.3,
33.6, 43.0, 55.3, 73.3, 73.4, 107.3, 114.3, 118.6, 118.9, 128.1,
128.4, 128.0, 133.5, 134.0, 139.3, 158.2, 163.5, 166.3. MS calcd
m/z 441.2, found 442.2 [(M + 1)]+. Anal. calcd for C27H27N3O3:
C, 73.45; H, 6.16; N, 9.52; Found: C, 73.61; H, 6.19; N, 9.65.

3,3′-(5-(2-Chloro-4-methoxyphenyl)-4-oxo-6-(p-tolyl)-2,3,4,5,6,7-
hexahydrofuro[3,2-c]pyridine-7,7-diyl)dipropanenitrile (3d).
White solid. m.p. 182–184 °C. 1H NMR (500 MHz, CDCl3): δ
= 1.72–1.77 (t, J = 24.5 Hz, 2H), 1.87 (s, 1H), 2.05 (s, 1H), 2.12
(s, 1H), 2.34 (s, 3H), 2.57–2.61 (t, J = 20.5 Hz, 3H), 3.07–3.10
(t, J = 16.0 Hz, 2H), 3.82–3.86 (d, J = 20.0 Hz, 3H), 4.38 (s,
1H), 4.67–4.71 (m, 2H), 6.63 (s, 1H), 6.82–6.84 (d, J = 6.5 Hz,
1H), 7.12–7.15 (t, J = 16.5 Hz, 3H); 13C NMR (CDCl3,
125 MHz): δ = 12.2, 12.8, 27.2, 27.6, 32.8, 42.9, 55.8, 70.5,
73.3, 106.6, 112.6, 118.9, 119.0, 124.8, 128.5, 129.3, 129.8.
130.8, 132.8, 139.2, 153.6, 163.3, 167.1. MS calcd m/z 475.2,
found 476.2 [(M + 1)]+. Anal. calcd for C27H26ClN3O3: C,
68.13; H, 5.51; N, 8.83; Found: C, 68.01; H, 5.46; N, 8.94.

3,3′-(4-Oxo-5,6-diphenyl-2,3,4,5,6,7-hexahydrofuro[3,2-c]pyri-
dine-7,7-diyl)dipropanenitrile (3e). White solid. m.p. 86–88 °C.
1H NMR (500 MHz, CDCl3): δ = 1.51–1.56 (m, 1H), 1.80–1.83
(m, 1H), 1.83–1.91 (m, 1H), 2.06–2.15 (m, 2H), 2.52–2.59 (m,
3H), 3.08–3.14 (m, 2H), 4.48 (s, 1H), 4.66–4.73 (m, 2H),
6.94–6.95 (d, J = 7.5 Hz, 2H), 7.16–7.22 (m, 1H), 7.23–7.27 (m,
2H), 7.33–7.38 (m, 3H); 13C NMR (CDCl3, 125 MHz): δ = 12.1,
13.0, 27.3, 33.5, 43.0, 73.1, 73.4, 107.2, 118.7, 118.8, 126.9,
127.0, 128.1, 129.0, 129.3, 136.6, 141.2, 163.2, 166.4. MS calcd
m/z 397.2, found 398.2 [(M + 1)]+. Anal. calcd for C25H23N3O2:
C, 75.54; H, 5.83; N, 10.57; Found: C, 75.36; H, 5.75; N, 10.65.

3,3′-(4-Oxo-5-phenyl-6-(o-tolyl)-2,3,4,5,6,7-hexahydrofuro[3,2-
c]pyridine-7,7-diyl)dipropanenitrile (3f). White solid. m.p.
206–208 °C. 1H NMR (500 MHz, CDCl3): δ = 1.53–1.59 (m,
1H), 1.80–1.85 (m, 2H), 1.98 (s, 3H), 2.00–2.05 (m, 1H),
2.18–2.22 (m, 1H), 2.56–2.62 (m, 3H), 3.09–3.16 (m, 2H),
4.70–4.85 (m, 2H), 4.85 (s, 1H), 6.89–6.90 (d, J = 7.5 Hz, 2H),
7.09–7.11 (t, J = 8.0 Hz, 1H), 7.19–7.20 (d, J = 7.5 Hz, 2H),
7.22–7.27 (m, 3H), 7.57–7.59 (t, J = 8.5 Hz, 1H); 13C NMR
(CDCl3, 100 MHz): δ = 12.4, 13.1, 19.9, 27.3, 27.7, 34.9, 43.0,
67.6, 73.4, 107.3, 118.6, 118.9, 127.1, 127.2, 127.4, 129.1,
131.6, 135.4, 135.5, 141.0, 163.0, 166.2. MS calcd m/z 411.2,
found 412.2 [(M + 1)]+. Anal. calcd for C26H25N3O2: C, 75.89;
H, 6.12; N, 10.21; Found: C, 76.02; H, 6.14; N, 10.25.

3,3′-(6-(Benzo[d][1,3]dioxol-5-yl)-4-oxo-5-phenyl-2,3,4,5,6,7-
hexahydrofuro[3,2-c]pyridine-7,7-diyl)dipropanenitrile (3g).
White solid. m.p. 120–122 °C. 1H NMR (500 MHz, CDCl3): δ
= 1.72–1.84 (m, 2H), 1.89–1.94 (m, 1H), 2.08–2.16 (m, 2H),
2.47–2.56 (m, 3H), 3.03–3.09 (m, 2H), 4.38 (s, 1H), 4.66–4.72
(m, 2H), 6.00–6.01 (d, J = 4.0 Hz, 2H), 6.56 (s, 1H), 6.71–6.72
(d, J = 8.0 Hz, 1H), 6.80 (s, 1H), 6.95–6.97 (d, J = 7.5 Hz, 2H),
7.19–7.22 (t, J = 14.5 Hz, 1H), 7.26–7.29 (t, J = 15.0 Hz, 2H);
13C NMR (CDCl3, 100 MHz): δ = 12.2, 13.0, 27.1, 33.4, 43.0,
72.9, 73.4, 101.6, 107.0, 107.7, 108.6, 118.6, 118.9, 122.1,
127.0, 127.1, 129.0, 130.2, 141.2, 148.2, 148.4, 163.0, 166.6.
MS calcd m/z 441.2, found 442.2 [(M + 1)]+. Anal. calcd for

C26H23N3O4: C, 70.73; H,5.25; N, 9.52; Found: C, 70.56; H,
5.23; N, 9.45.

3,3′-(6-(4-Chlorophenyl)-4-oxo-5-phenyl-2,3,4,5,6,7-hexahy-
drofuro[3,2-c]pyridine-7,7-diyl)dipropanenitrile (3h). White
solid. m.p. 204–206 °C. 1H NMR (500 MHz, CDCl3): δ =
1.75–1.79 (m, 2H), 1.90–1.94 (t, J = 19.5 Hz, 1H), 2.13–2.19
(m, 2H), 2.50–2.59 (m, 3H), 3.06–3.13 (m, 2H), 4.49 (s, 1H),
4.67–4.74 (m, 2H), 6.91–6.93 (d, J = 8.0 Hz, 2H), 7.15–7.21
(m, 3H), 7.25–7.26 (d, J = 6.5 Hz, 2H), 7.28–7.33 (t, J = 25.5
Hz, 2H); 13C NMR (CDCl3, 125 MHz): δ = 12.6, 13.3, 27.4,
27.5, 33.3, 43.2, 72.6, 73.8, 107.5, 118.8, 118.9, 127.3, 127.4,
129.5, 129.8, 125.3, 125.6, 141.2, 163.3, 166.8. MS calcd m/z
431.1, found 432.1 [(M + 1)]+. Anal. calcd for C25H22ClN3O2:
C, 69.52; H, 5.13; N, 9.73; Found: C, 69.75; H, 5.18; N, 9.84.

3,3′-(6-(2-Chlorophenyl)-4-oxo-5-phenyl-2,3,4,5,6,7-hexahy-
drofuro[3,2-c]pyridine-7,7-diyl)dipropanenitrile (3i). White
solid. m.p. 194–196 °C. 1H NMR (500 MHz, CDCl3): δ =
1.73–1.80 (m, 1H), 1.84–1.90 (m, 1H), 1.97–2.04 (m, 1H),
2.13–2.19 (m, 1H), 2.23–2.29 (m, 1H), 2.45–2.51 (m, 1H),
2.59–2.61 (m, 2H), 3.07–3.16 (m, 2H), 4.67–4.76 (m, 2H), 5.24
(s, 1H), 6.92–6.93 (d, J = 7.0 Hz, 2H), 7.18–7.21 (t, 1H),
7.25–7.28 (t, J = 15.0 Hz, 2H), 7.30–7.33 (m, 2H), 7.34–7.38
(m, 1H), 7.62–7.64 (t, J = 10.0 Hz, 1H); 13C NMR (CDCl3,
125 MHz): δ = 12.6, 12.9, 27.0, 27.2, 33.8, 43.2, 66.8, 73.5,
107.2, 118.5, 118.8, 126.6, 127.0, 128.0, 129.1, 129.1, 130.5,
130.5, 133.5, 134.8, 140.7, 163.1, 166.3. MS calcd m/z 431.1,
found 432.1 [(M + 1)]+. Anal. calcd for C25H22ClN3O2: C,
69.52; H, 5.13; N, 9.73; Found: C, 69.71; H, 5.15; N, 9.79.

3,3′-(6-(Furan-2-yl)-4-oxo-5-phenyl-2,3,4,5,6,7-hexahydrofuro-
[3,2-c]pyridine-7,7-diyl)dipropanenitrile (3k). White solid.
m.p. 186–188 °C. 1H NMR (500 MHz, CDCl3): δ = 1.73–1.79
(m, 1H), 1.97–2.00 (m, 1H), 2.05–2.13 (m, 2H), 2.37–2.49 (m,
2H), 2.53–2.59 (m, 2H), 3.01–3.13 (m, 2H), 4.64 (s, 1H),
4.66–4.74 (m, 2H), 6.24–6.27 (t, J = 12.5 Hz, 1H), 6.36–6.36
(d, J = 1.5 Hz, 1H), 7.00–7.01 (d, J = 7.5 Hz, 2H), 7.20–7.26
(m, 1H), 7.29–7.32 (m, 2H), 7.40–7.40 (d, J = 1.0 Hz, 1H); 13C
NMR (CDCl3, 125 MHz): δ = 11.9, 13.1, 27.0, 27.3, 31.5, 43.4,
65.8, 73.6, 107.2, 110.6, 111.0, 118.6, 118.8, 126.6, 127.0,
129.1, 140.9, 142.9, 149.5, 163.6, 166.5. MS calcd m/z 387.1,
found 388.1 [(M + 1)]+. Anal. calcd for C22H21N3O3: C, 71.30;
H, 5.46; N, 10.85; Found: C, 71.43; H, 5.52; N, 10.73.

3,3′-(4-Oxo-5-phenyl-6-(thiophen-2-yl)-2,3,4,5,6,7-hexahydro-
furo[3,2-c]pyridine-7,7-diyl)dipropanenitrile (3l). White solid.
m.p. 162–164 °C. 1H NMR (500 MHz, CDCl3): δ = 1.71–1.77
(m, 1H), 2.04–2.18 (m, 3H), 2.21–2.26 (m, 1H), 2.49–2.55 (m,
2H), 2.63–2.70 (m, 1H), 3.04–3.12 (m, 2H), 4.70–4.74 (d, J =
19.5 Hz, 2H), 4.72 (s, 1H), 6.75–6.76 (d, J = 7.0 Hz, 1H),
6.89–6.91 (m, 1H), 6.95–6.97 (t, J = 7.5 Hz, 2H), 7.23–7.32 (m,
4H); 13C NMR (CDCl3, 125 MHz): δ = 11.6, 13.1, 25.6, 27.1,
30.6, 43.3, 69.2, 73.8, 107.1, 118.6, 118.8, 126.3, 126.9, 127.1,
127.2, 128.7, 129.2, 138.5, 141.0, 162.8, 167.4. MS calcd m/z
403.1, found 404.1 [(M + 1)]+. Anal. calcd for C23H21N3O2S: C,
68.46; H,5.25; N, 10.41; Found: C, 68.54; H, 5.27; N, 10.49.

(E)-3,3′-(4-Oxo-5-phenyl-6-styryl-2,3,4,5,6,7-hexahydrofuro-
[3,2-c]pyridine-7,7-diyl)dipropanenitrile (3n). White solid.
m.p. 201–203 °C. 1H NMR (500 MHz, CDCl3): δ = 1.91–1.93
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(d, J = 9.0 Hz, 1H), 2.12–2.15 (t, J = 14.0 Hz, 1H), 2.23–2.25
(t, 1H), 2.41–2.47 (m, 3H), 2.51–2.55 (m, 2H), 3.00–3.06 (m,
2H), 4.11 (d, J = 6.0 Hz, 1H), 4.67–4.72 (m, 2H), 6.14–6.19 (m,
1H), 6.35–6.38 (d, J = 16.0 Hz, 1H), 7.16–7.18 (d, J = 7.5 Hz,
2H), 7.28–7.36 (m, 8H); 13C NMR (CDCl3, 125 MHz) δ = 11.8,
12.9, 26.1, 27.3, 29.7, 42.4, 70.6, 73.5, 106.7, 118.7, 122.2,
126.6, 127.1, 127.8, 128.7, 129.2, 135.1, 135.9, 140.8, 163.3,
167.7, 171.7. MS calcd m/z 423.2, found 424.2 [(M + 1)]+.
Anal. calcd for C27H25N3O2: C, 76.57; H, 5.95; N, 9.92; Found:
C, 76.69; H, 6.01; N, 9.99.

3-(4,8-Dioxo-5-phenyl-6-(p-tolyl)-5-azaspiro[2.5]octan-7-yl)-
propanenitrile (4). White solid. m.p. 202–204 °C. 1H NMR
(400 MHz, CDCl3): δ = 1.65 (s, 1H), 1.92 (s, 1H), 2.03–2.09
(m, 2H), 2.17–2.25 (m, 2H), 2.36 (s, 3H), 2.39–2.42 (m, 2H),
2.75 (m, 1H), 4.46 (m, 1H), 6.88–6.90 (d, J = 86.0 Hz, 2H),
6.97–6.99 (d, J = 99.5 Hz, 2H), 7.16–7.18 (d, J = 98.0 Hz, 2H),
7.29–7.35 (m, 3H). 13C NMR (CDCl3, 100 MHz): δ = 11.5,
12.6, 21.1, 23.6, 25.3, 27.6, 29.6, 33.4, 53.6, 70.2, 117.9, 118.7,
127.0, 127.2, 128.0, 128.8, 129.6, 130.5, 133.4, 139.6, 141.5,
168.0, 205.2. MS calcd m/z 358.2, found 359.2 [(M + 1)]+.
Anal. calcd for C23H22N2O2: C, 77.07; H, 6.19; N, 7.82; Found:
C, 76.89; H, 6.17; N, 7.75.

Acknowledgements

Financial support from the NSFC (Nos. 20972027 and
21172034), Program for New Century Excellent Talents in Uni-
versity (NCET-11-0611), the Department of Science and Tech-
nology of Jilin Province (201215002), the Fundamental
Research Funds for the Central Universities (11SSXT129) and
Open Project of State Key Laboratory of Supramolecular Struc-
ture and Materials (sklssm201225) is gratefully acknowledged.

Notes and references

1 (a) B. Wolters and U. Eilert, Planta Med., 1981, 43, 166; (b) G. Petit-
Pali, M. Rideau and J. C. Chenieux, Planta Med. Phytother., 1982, 16,
55; (c) G. H. Syoboda, G. H. Poore, P. J. Simpson and G. B. Boder, J.
Pharm. Sci., 1966, 55, 758; (d) L. K. Basco, S. Mitaku, A.
L. Skaltsounis, N. Ravelomanantsoa, F. Tillequin, M. Koch and J. Le
Bras, Antimicrob. Agents Chemother., 1994, 38, 1169; (e) M. D. Surman,
E. E. Freeman, J. F. Grabowski, M. Hadden, A. J. Henderson, G. Jiang,
X. Jiang, M. Luche, Y. Khmelnitsky, S. Vickers, J. Viggers, S. Cheetham
and P. R. Guzzo, Bioorg. Med. Chem. Lett., 2010, 20, 7015.

2 (a) S. Sakemi, J. Bordner, D. L. DeCosta, K. A. Dekker, H. Hirai,
T. Inagaki, Y.-J. Kim, N. Kojima, J. C. Sims, Y. Sugie, A. Sugiura, J.
A. Sutcliffe, K. Tachikawa, S. J. Truesdell, J. W. Wong, N. Yoshikawa
and Y. Kojima, J. Antibiot., 2002, 55, 6; (b) D. L. J. Clive and X. Huang,
J. Org. Chem., 2004, 69, 1872; (c) T. Fukuda, H. Tomoda and S. Omura,
J. Antibiot., 2005, 58, 315; (d) T. Fukuda, Y. Yamaguchi, R. Masuma,
H. Tomoda and S. Omura, J. Antibiot., 2005, 58, 309.

3 J.S.New,W.L.Christopher, J. P.Yevich,R.Butler,R.Schlemmer, J. Francis,
C.P.VanderMaelnandJ.A.Cipollina,J.Med.Chem., 1989,32, 1147.

4 (a) D. G. Wishka, D. R. Graber, E. P. Seest, L. A. Dolak, F. Han, W. Watt
and J. Morris, J. Org. Chem., 1998, 63, 7851; (b) I. N. Houpis, W.
B. Choi, P. J. Reider, A. Molina, H. Churchill, J. Lynch and R. P. Volante,
Tetrahedron Lett., 1994, 35, 9355; (c) M. Bhupathy, D. A. Conlon, K.
M. Wells, J. R. Nelson, P. J. Reider, K. Rossen, J. W. Sager, R. P. Volante,
B. D. Dorsey, J. M. Hoffman, S. A. Joseph and S. L. McDaniel, J. Het-
erocycl. Chem., 1995, 32, 1283.

5 A. Naylor, D. B. Judd, D. I. C. Scopes, A. G. Hayes and P. J. Birch, J.
Med. Chem., 1994, 37, 2138.

6 (a) Y. R. Lee, B. S. Kim and H. I. Kweon, Tetrahedron, 2000, 56, 3867;
(b) H. Senboku, M. Takashima, M. Suzuki, K. Kobayashi and

H. Suginome, Tetrahedron, 1996, 52, 6125; (c) H. Suginome,
K. Kobayashi, M. Itoh, S. Seko and A. Furusaki, J. Org. Chem., 1990,
55, 4933; (d) B. B. Snider and Q. Che, Org. Lett., 2004, 6, 2877; (e) M.
C. Pirrung and F. Blume, J. Org. Chem., 1999, 64, 3642;
(f ) T. Miyagawa, K. Nagai, A. Yamada, Y. Sugihara, T. Fukuda,
T. Fukuda, R. Uchida, H. Tomoda, S. Omura and T. Nagamitsu, Org.
Lett., 2011, 13, 1158; (g) D. Conreaux, T. Delaunay, P. Desbordes,
N. Monteiro and G. Balme, Tetrahedron Lett., 2009, 50, 3299;
(h) A. Fayol and J. Zhu, Org. Lett., 2004, 6, 115.

7 P. Huang, N. Zhang, R. Zhang and D. Dong, Org. Lett., 2012, 14, 370.
8 (a) F. Liang, S. Lin and Y. Wei, J. Am. Chem. Soc., 2011, 133, 1781;
(b) Y. Wei, S. Lin, J. Zhang, Z. Niu, Q. Fu and F. Liang, Chem.
Commun., 2011, 47, 12394; (c) Y. Wei, S. Lin, J. Liu, H. Ding, F. Liang
and B. Zhao, Org. Lett., 2010, 12, 4220; (d) X. Cheng, F. Liang, F. Shi,
L. Zhang and Q. Liu, Org. Lett., 2009, 11, 93; (e) F. Liang, X. Cheng,
J. Liu and Q. Liu, Chem. Commun., 2009, 3636.

9 For reviews on ARC by Smith and Moser: (a) A. B. Smith, III and W.
M. Wuest, Chem. Commun., 2008, 5883; (b) A. B. Smith, III and C.
M. Adams, Acc. Chem. Res., 2004, 37, 365; (c) W. H. Moser, Tetrahe-
dron, 2001, 57, 2065; for multi-component ARC, see; (d) N. O. Bevarie-
Baez, W.-S. Kim, A. B. Smith, III and M. Xian, Org. Lett., 2009, 11,
1861. For carbon-to-carbon ARC (e) P. G. Zheng, Z. X. Cai,
A. Garimallaprabhakaran, P. Rooshenas, P. R. Schreiner and M. Harmata,
Eur. J. Org. Chem., 2011, 5255. For dianion relay: (f ) H. Li, L. Liu,
Z. Wang, F. Zhao, S. Zhang, W.-X. Zhang and Z. Xi, Chem.–Eur. J.,
2011, 17, 7399. Other example (g) L. Gao, X. Lin, J. Lei, Z. Song and
Z. Lin, Org. Lett., 2012, 14, 158.

10 For reviews on multi-component reactions: (a) Multi-component Reac-
tions, ed. J. Zhu and H. Bienayme, Wiley-VCH, Weinheim, Germany,
2005; (b) A. Domling, Chem. Rev., 2006, 106, 17; (c) D. Enders,
C. Grondal and M. R. M. Hüttl, Angew. Chem., Int. Ed., 2007, 46, 1570;
(d) K. C. Nicolaou and J. S. Chen, Chem. Soc. Rev., 2009, 38, 2993.

11 (a) F. Bertozzi, M. Gustafsson and R. Olsson, Org. Lett., 2002, 4, 3147;
(b) P. A. Wender, G. G. Gamber, R. D. Hubbard, S. M. Pham and
L. Zhang, J. Am. Chem. Soc., 2005, 127, 2836; (c) C. A. Carson and M.
A. Kerr, J. Org. Chem., 2005, 70, 8242; (d) Y.-B. Kang, Y. Tang and X.-
L. Sun, Org. Biomol. Chem., 2006, 4, 299; (e) M. Shi, M. Jiang and L.-
P. Liu, Org. Biomol. Chem., 2007, 5, 438; (f ) J. Xu, L. Wu and
X. Huang, J. Org. Chem., 2011, 76, 5598.

12 For recent examples of the application of acrylonitrile in organic syn-
thesis, see: (a) M. C. Lamas and A. Studer, Org. Lett., 2011, 13, 2236;
(b) T. Ueyama, S. Mochida, T. Fukutani, K. Hirano, T. Satoh and
M. Miura, Org. Lett., 2011, 13, 706; (c) X. Li, X. Gong, M. Zhao,
G. Song, J. Deng and X. Li, Org. Lett., 2011, 13, 5808; (d) B. C. Ranu
and S. Banerjee, Org. Lett., 2005, 7, 3049.

13 Substrates 1 were readily prepared according to reported procedure. See:
(a) Z. Zhang, Q. Zhang, S. Sun, T. Xiong and Q. Liu, Angew. Chem., Int.
Ed., 2007, 46, 1726; (b) W. Pan, D. Dong, K. Wang, J. Zhang, R. Wu,
D. Xiang and Q. Liu, Org. Lett., 2007, 9, 2421.

14 CCDC 796156 (3a) contains the supplementary crystallographic data for
this paper.

15 The reason for the use of excess NaH (2.5 equiv) was due to the water
eliminated from the reaction system (via aldol condensation) would
consume 1.0 equiv of NaH.

16 The reaction of 1-acetyl-N-alkylcyclopropanecarboxamides (1.0 mmol)
with arylaldehydes (1.1 equiv) and acrylonitrile (2.5 equiv) under other-
wise identical conditions gave the corresponding aldol condensation/5-
exo-trig cyclization products. See: Y. Li, X. Xu, J. Tan, P. Liao, J. Zhang
and Q. Liu, Org. Lett., 2010, 12, 244.

17 X. Bi, J. Zhang, Q. Liu, J. Tan and B. Li, Adv. Synth. Catal., 2007, 349, 2301.
18 Besides acrylonitrile, arylaldehydes and chalcones proved to be appropri-

ate electrophiles (see below). Multi-component reactions with BnBr or
MeI as the external electrophile were unsuccessful.

.

This journal is © The Royal Society of Chemistry 2012 Org. Biomol. Chem., 2012, 10, 4571–4576 | 4575

Pu
bl

is
he

d 
on

 1
7 

A
pr

il 
20

12
. D

ow
nl

oa
de

d 
by

 Q
ue

en
s 

U
ni

ve
rs

ity
 -

 K
in

gs
to

n 
on

 2
7/

10
/2

01
4 

13
:0

6:
43

. 
View Article Online

http://dx.doi.org/10.1039/c2ob25550b


19 Selected examples of 1,3-H shift: (a) J. Mulzer, J. Bilow and G. Wille, J.
Prakt. Chem., 2000, 342, 773; (b) Y.-H. Wang, H. Liu, L.-L. Zhu, X.-
X. Li and Z. Chen, Adv. Synth. Catal., 2011, 353, 707; (c) R. Hayashi,
Z.-X. Ma and R. P. Hsung, Org. Lett., 2012, 14, 252.

20 The ring-opening of the cyclopropyl enolates VI was supposed to
undergo a concerted mechanism. For 1,3-sigmatropic rearrangement of
vinyl(acyl)cylcopropanes, see: (a) J. E. Baldwin, K. A. Villarica, D.
I. Freedberg and F. A. L. Anet, J. Am. Chem. Soc., 1994, 116, 10845;
(b) J. E. Baldwin and R. C. Burrell, J. Org. Chem., 1999, 64, 3567;
(c) M. E. Alonso and A. Morales, J. Org. Chem., 1980, 45, 4532.

21 For recent papers on α C–H functionalization of ketones, see:
(a) P. Kwiatkowski, T. D. Beeson, J. C. Conrad and D. W. C. MacMillan,
J. Am. Chem. Soc., 2011, 133, 1738; (b) P. Gandeepan, K. Parthasarathy
and C.-H. Cheng, J. Am. Chem. Soc., 2010, 132, 8569; (c) C. He,
S. Guo, L. Huang and A. Lei, J. Am. Chem. Soc., 2010, 132, 8273;
(d) J. Xie and Z.-Z. Huang, Angew. Chem., Int. Ed., 2010, 49, 10181.

22 For quarternary carbon atom construction: (a) K. Fuji, Chem. Rev., 1993,
93, 2037; (b) E. J. Corey and A. Guzman-Perez, Angew. Chem., Int. Ed.,
1998, 37, 389; (c) M. L. Clarke and G. J. Roff, Chem.–Eur. J., 2006, 12,
7978.

4576 | Org. Biomol. Chem., 2012, 10, 4571–4576 This journal is © The Royal Society of Chemistry 2012

Pu
bl

is
he

d 
on

 1
7 

A
pr

il 
20

12
. D

ow
nl

oa
de

d 
by

 Q
ue

en
s 

U
ni

ve
rs

ity
 -

 K
in

gs
to

n 
on

 2
7/

10
/2

01
4 

13
:0

6:
43

. 
View Article Online

http://dx.doi.org/10.1039/c2ob25550b

