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Abstract: 1,4-Diazabicyclo[2.2.2]octane (DABCO)-mediated ring
opening of 1-acetylcyclopropanecarboxamides efficiently gave sta-
ble zwitterions that could be formed in situ or readily isolated. An
application of this novel type of ring opening was demonstrated in
a one-pot efficient construction of biologically interesting 3-alkyl y-
lactams. The Lewis-base protocol provides an opportunity for per-
forming ring opening, cycloaddition, and rearrangement reactions
of donor—acceptor cyclopropanes through organocatalysis.
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Cyclopropane derivatives are useful in organic chemistry
because they can undergo a variety of ring-opening reac-
tions with a wide range of reactive species, such as elec-
trophiles, nucleophiles, or radicals.! Recent decades have
witnessed the development of Lewis acid catalyzed ring-
opening reactions of cyclopropanes activated by electron
donors and/or acceptors, which have found widespread
applications in the construction of various carbocycles
and heterocycles.” In the presence of a Lewis acid or a
Brensted acid, the activated cyclopropane can function as
a source of 1,3-dipoles. However, there are few examples
of Lewis base catalyzed ring-opening reactions of activat-
ed cyclopropanes.® As early in 1975, Danishefsky and
Singh reported that a weak nucleophilic tertiary amine
triggered ring opening of activated spiroacylal (6,6-di-
methyl-5,7-dioxaspiro[2.5]octane-4,8-dione).>* In 2006,
Kuznetsova and co-workers reported that 1,1-dinitrocy-
clopropanes react with tertiary amines such as triethyl-
amine, pyridine, or 4-aminopyridine to give zwitterionic
compounds.*® As a continuation of our previous research-
es on ring opening and recyclization of cyclopropanes ac-
tivated by electron-withdrawing groups to give various
heterocycles,* we aimed to explore the Lewis base cata-
lyzed ring opening of activated cyclopropanes (Scheme
1). We surmised that the base protocol should provide a
good opportunity for performing ring opening, cycloaddi-
tion, and rearrangement of donor—acceptor cyclopropanes
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through organocatalysis,® instead of by Lewis acid cataly-
sis, as currently widely used.
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Scheme 1 Lewis acid versus Lewis base mediated ring-opening re-
actions of activated cyclopropanes (EWG = electron-withdrawing
group; LA = Lewis acid; LB = Lewis base)

Here, we report our most recent finding on ring-opening
reactions of 1-acetylcyclopropanecarboxamides mediated
by Lewis bases such as 1,4-diazabicyclo[2.2.2]octane
(DABCO) or 1,8-diazabicyclo[5.4.0Jundec-7-ene (DBU)
to give zwitterionic intermediates that might be capable of
functioning as sources of 1,3-dipoles,® and their further
applications in a one-pot synthesis of 3-alkylated y-lact-
ams.’

We began our studies by using 1-acetyl-N-phenylcyclo-
propanecarboxamide (1a) as a model substrate for the re-
action (Table 1). With triethylamine or 4-(V,N-
dimethylamino)pyridine (1.05 equiv) as the Lewis base,
no reaction occurred in acetonitrile at 60 °C (Table 1, en-
tries 1 and 2). DBU induced deacetylation and cleavage of
the cyclopropane ring (entry 3). To our delight, DABCO
(1.05 equiv) efficiently induced ring opening of the acti-
vated cyclopropane 1a to give the desired water-soluble
zwitterionic salt 2a in 94% yield (entry 4), demonstrating
the validity of the Lewis-base concept. We then examined
the effects of various organic solvents such as toluene,
1,2-dichloroethane, tetrahydrofuran, dimethyl sulfoxide,
and N,N-dimethylformamide. All these solvents gave
zwitterionic salt 2a, but with reduced yields (entries 5-9).
The use of water as a green solvent was also examined; as
a result, salt 2a was obtained in a 95% yield, comparable
to that obtained in acetonitrile (entry 10). Increasing the
temperature to 80 °C was unfavorable (entry 11), and re-
action at 40 °C led to a prolonged reaction time and a de-
crease in the yield (entry 12).

Having identified the optimal conditions (Table 1, entry
10), we subjected various 1-acetylcyclopropanecarbox-
amides 1 to the reaction sequence (Scheme 2). The N-aryl

s
=
i)
©
1S
°
9]
2
=
2
=
=
2
o
(@)
2
2
&
o
=
c
=)
i)
@
8
[%2]
o
8
o
=
o
o
<
=
o)
P4
<
a
°
9
=}
IS
kel
c
2
S)
o



2272 L. Lietal.

CLUSTER

Table 1 Optimization of the Reaction Conditions®

~AHG_Ph
(0] (e} ©0” N

Lewis base (R3N) S

—_—
solvent

1a temp ©
NRs

2a

Entry Lewisbase Solvent®  Temp (°C) Time (h) Yield® (%)

1 Et;N MeCN 60 24 NR
2 DMAP MeCN 60 24 NR
3 DBU MeCN 60 14 544
4 DABCO MeCN 60 14 94
5 DABCO toluene 60 14 69
6 DABCO DCE 60 14 70
7 DABCO THF 60 14 81
8 DABCO DMSO 60 14 86
9 DABCO DMF 60 14 83
10 DABCO H,0 60 12 95
11 DABCO H,O 80 14 84
12 DABCO H,O 40 48 81

2 Reaction conditions: 1a (0.5 mmol), Lewis base (1.05 equiv), solvent
(1.0 mL).

b Solvents were used directly as received.

¢ Isolated yield.

4 Deacetylation was observed. The structure was not determined.

substrates 1a—c successfully gave the corresponding zwit-
terions 2a—c in 87-95% yields.® However, when R was an
alkyl group such as benzyl, only trace amount of product
2 were obtained.’ In addition to activation by the electron-
withdrawing acetyl or amide groups, intramolecular hy-
drogen bonding is also likely to play a role in the ring
opening of the cyclopropanes.!® Note that zwitterion 2a
could be easily prepared as a white solid on a multigram
scale.

o (o}
DABCO
NHR H,0, 60 °C
1
R =Ph
R = 4-MeOCgH,4
R = 2-pyridyl
R=Bn

Next, we examined potential applications of zwitterions 2,
which can be isolated or formed in situ. In a one-pot reac-
tion starting from substrate 1a, DABCO (1.05 equiv), io-
domethane (1.5 equiv, used as an electrophile), and
sodium hydroxide (1.2 equiv) were added sequentially
(Scheme 3).!" We were pleased to find that y-lactam 3a,
with an all-carbon quaternary center, was obtained in 87%
yield. On the basis of this result, we examined the reaction
with three other electrophiles: benzyl bromide, allyl bro-
mide, and propargyl bromide. 3-Acetyl-N-aryl-y-lactams
3b-e bearing a benzyl substituent, and latent ethylene and
acetylene functional groups were successfully prepared as
the sole products in 86—90% yields. Lactam 3b was simi-
larly prepared from the 4-tolyl analogue of 1a in 89%
yield.

0 o
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Scheme 3 Synthesis of y-lactams 3 with a quaternary center. Re-
agents and conditions: (1) 1a (Ar = Ph) or 1b (Ar = 4-Tol) (0.5
mmol), DABCO (1.05 equiv), MeCN (1.0 mL), 60 °C, 14 h; (2) Mel,
BnBr, CH,=CHCH,Br, or HC=CHCH,Br (1.5 equiv), DMF (2.0
mL); r.t., 0.5 h; (3) NaOH (1.2 equiv), r.t., 0.5 h. Yields are isolated
yields.

Moreover, deacetylation of compounds 3 occurred on in-
creasing the concentration of base in the final step and
prolonging the reaction time to 12 hours. We used this
method to prepare the 3-substituted y-lactams 4a—d in
high yields (Scheme 4).

AHR
Slo g Nig

[%3
N
2
2a, 95%
2b, 87%

2c, 91%
2d, trace

white solid of 2a (2.9 grams)

Scheme 2 DABCO-mediated ring opening of activated cyclopropanes 1 to give zwitterions 2

Synlett 2014, 25, 2271-2274

© Georg Thieme Verlag Stuttgart - New York

Downloaded by: North Dakota State University. Copyrighted material.



Ring Opening of 1-Acetylcyclopropanecarboxamides 2273

CLUSTER
(0]
DABCO
N/Ar
NHAr
MeCN DMF 12 h
14 h 4
\é ij /Ph
Ph
4a, 85% 4b, 84%
o (0]
Vi
4c, 85% 4d, 89%

Scheme 4 Synthesis of 3-substituted y-lactams 4. Reaction condi-
tions: (1) 1a (Ar = Ph) or 1¢ (Ar = 4-Py) (0.5 mmol), DABCO (1.05
equiv), MeCN (1.0 mL), 60 °C, 14 h; (2) Mel, BnBr, CH,=CHCH,Br,
or HC=CHCH,Br (1.5 equiv), DMF (1.0 mL); r.t., 0.5 h; (3) NaOH
(2.5 equiv), r.t., 12 h. Yields are isolated yields.

On the basis of these results, we proposed a possible
mechanism for the formation of y-lactams 3 and 4
(Scheme 5). The process involves tandem ring opening of
the activated cyclopropane to give the zwitterionic inter-
mediate 2, enolate alkylation to give quaternary ammoni-
um salt I, and intramolecular nucleophilic substitution to
give y-lactam 3. Deacetylation occurs on prolonging the
reaction time and increasing the base concentration, giv-
ing rise to 3-alkylated y-lactams 4.2

' \
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(DABCO = NRg)

NaOH % NaOH \&/

Scheme 5 Possible mechanism for the formation of y-lactams 3 and 4

NR3I

In summary, DABCO-mediated ring opening of 1-acetyl-
cyclopropanecarboxamides has been demonstrated. The
resulting zwitterions, which can be isolated or used in situ,
are readily obtained, even with water as the solvent. By a
one-pot multistep reaction, 3-acetyl y-lactams with an all-
carbon quaternary center were prepared with high effi-
ciency. 3-Alkylated y-lactams can also be prepared by a
subsequent deacetylation step. The Lewis base catalyzed
ring opening, which has emerged as a new mode of acti-
vation, is expected to find additional applications in the
cycloaddition and rearrangement reactions of donor—
acceptor cyclopropanes. Further work is ongoing in our
laboratory.
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