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ABSTRACT: A visible-light-promoted electron-donor—acceptor (EDA) com- o RH
plex-initiated [S + 1] annulation between biguanides and perfluoroalkyl halides for NH e visble light NN
R A A R+ (BFC eor RiN)\\N)\N:RJ

the construction of perfluoroalkyl-s-triazines has been developed. It was found that
both visible light and dioxygen in the air are favorable for the reaction. A radical—
polar crossover mechanism was proposed, in which sequential SET, radical
combination, HF elimination, electrocyclization, and aromatization are involved.

riazines represent one class of significant aza-heterocycles

because of their broad applications in biology,’
pharmaceutics,” and optoelectronics.” Therefore, the develop-
ment of mild and efficient methods for constructing triazine
heterocycles is of great importance. In particular, biguanides
can be used as effective building blocks for the assembly of s-
triazines because of their unique structural features. Repre-
sentative preparation routes involve acylation/cyclization of
biguanides with the appropriate esters (Figure la),* and
transition-metal-catalyzed reactions of biguanides and selected
alcohols™ or dihaloalkenes®® under thermal conditions (Figure
1b,c).” In our recent research, we have developed a visible-
light-promoted three-component [2 + 1 + 3] pyrimidine
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Figure 1. Assembly of functionalized triazines starting from
biguanidine substrates.
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up to 87% yield

« Photocatalyst- and metal-free « Mild reaction conditions

[5+1]

« High efficiency « Visible light promoted

synthesis mediated by electron donor—acceptor (EDA)
complexes® formed between enolate anions and perfluoroalkyl
halides.” As a continuation of the research, herein we report
the unprecedented [S + 1] annulation of biguanides and
perfluoroalkyl iodides under photoconditions, giving rise to the
6-perfluoroalkyl-s-triazine scaffold (Figure 1d). It is known that
the introduction of fluorine(s) into triazine rings can strongly
modify the lipophilicity, bioactivity, and metabolic stability of
drugs"*" and improve the properties of organic optoelectronic
materials.* The reaction has the advantages of relatively broad
scope, high efficiency, and mild, metal-free conditions.

Our initial investigation focused on optimization of the
conditions with the model reaction of metformin hydro-
chloride (1a) and perfluorobutyl iodide (2a) (1.1 equiv) in the
presence of a base (5.1 equiv) (Tables 1 and S1). The major
parameters included the light source and solvent. Under 36 W
CFL irradiation, the reaction in dichloromethane could not
afford the [S + 1] annulation product 3a (entry 1). The
structure of 3a, which was unambiguously confirmed by single-
crystal X-ray diffraction, is supposed to be formed via EDA-
complex-initiated [S + 1] annulation. Other solvents examined
included THF, DMSO, DMF, MeCN, and toluene (entries 2—
6), and DMF proved to be most efficient, giving 3a in 78%
yield in 6 h (entry 4). As for light sources investigated, the
reactions under ambient light and 12 W blue LEDs also
proceeded, but the yield decreased (entries 7 and 8). However,
the reaction conducted in the dark led to a lower yield (11 h,
entry 9), illustrating that visible light is critical in promoting
the reaction. One of the main findings is that dioxygen in the
air may enhance the reaction efficiency. Comparatively, the
reaction performed under an atmosphere of N, gave merely a
trace amount of product (entry 10). We suspect that dioxygen
in the reaction system might be beneficial for the single
electron transfer (SET) process involved in the reaction (see
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Table 1. Optimization of the Reaction Conditions”

C3F7
I‘\IH NH Ol 4 CuFet light N‘ v{‘-
Me,N Ha solvent, rt MeZN LN ¢
NaOH d
1a 2a 3a
entry light source solvent time (h) yield (%)b
1 36 W CFL DCM 12 n.r.
2 36 W CFL THF 18 15
3 36 W CFL DMSO 18 trace
4 36 W CFL DMF 6 78
S 36 W CFL MeCN 8 60
6 36 W CFL toluene 12 n.r.
7 ambient light DMF 6 65
8 12 W blue LEDs DMF 6 SS
9 in the dark DMF 11 48
10° 36 W CFL DMF 4 trace

“Reactions were carried out with 1a (0.5 mmol), 2a (1 1 equiv), and
NaOH (5.1 equiv) in 1 mL of solvent in the open air. YIsolated yields.
“The reaction was performed under an atmosphere of N,.

Scheme 6). Finally, we confirmed the best conditions in this
screen involved a 36 W CFL, NaOH, and DMF at 0.5 M
concentration in the open air.

With the optimized conditions in hand (Table 1, entry 4),
we set out to examine the reaction scope. A range of
biguanides were examined in the following work (Scheme 1).
In particular, N,N- and N,N’-disubstituted biguanides were
suitable, giving 3a—d in fairly good yields (69—80%). A variety

Scheme 1. Reaction of Biguanides with Perfluorobutyl
Iodide: Synthesis of s-Triazines™"*
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“Reaction conditions: 1 (1 mmol), 2a (1.1 equiv), and NaOH (5.1
equiv) in DMF (2 mL). 10 equiv of NaOH was used to neutralize
HCI from 1. “Isolated yields are shown.

of monosubstituted biguanides reacted with 2a under the
standard conditions, giving 3e—h in moderate yields (65—
75%). A monosubstituted biguanide with N-aryl groups,
including electron-withdrawing or -donating substituents at
the ortho or para position of the phenyl ring, reacted smoothly
with 2a under the optimized conditions, affording 3f—m in
moderate to high yields (71—87%). Moreover, nonsubstituted
biguanide afforded perfluoropropylated s-triazine 3n in 74%
yield.

To further examine the scope and utility of this reaction, the
scope of perfluoroalkyl halides was examined (Scheme 2). 1,1-

Scheme 2. Scope of Perfluoroalkyl Halides™"*
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“Reaction conditions: la (1 mmol), 2 (1.1 equiv), and NaOH (5.1
equiv) in DMF (2 mL). ®1.0 equiv of NaOH was used to neutralize
HCI from 1a. “Isolated yields are shown.

Dimethylbiguanide hydrochloride was reacted with various
perfluoroalkyl iodides under the optimized conditions. As a
result, 6-perfluoroalkyl-s-triazines 4a—e with different carbon
chain lengths were obtained efficiently. The yields correspond-
ing to different perfluoroalkyl chains were 67% for —CF; (4a),
79% for —C,F; (4b), 76% for —C:F;; (4c), and 75% for
—C,Fy5 (4d). Mixed-halogen perfluoroalkyl-containing prod-
uct 4e was also obtained in 73% yield.

Bistriazine § was successfully assembled in 53% yield starting
from bioactive chlorhexidine, which contains two chemically
linked biguanide moieties (Scheme 3). All of the above results
(Schemes 1—3) demonstrate the scope and efficiency of the
EDA-complex-initiated [S + 1] annulation reaction.

Scheme 3. Synthesis of Bistriazines
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Aminotriazine derivatives have been reported in pharmaco-
logical studies, particularly as neuronal voltage-gated sodium
channel blockers and diuretics.” To demonstrate a synthetic
application of the present methodology, we synthesized 6-
(chlorodifluoromethyl)-N*-phenyl-1,3,5-triazine-2,4-diamine
(6, CAS no. 53387-73-8), a compound with postemergence
herbicidal activity,'" in 80% yield upon irradiation of I-
(diaminomethylene)-3-phenylguanidine and 1-chloro-1,1,2,2-
tetrafluoro-2-iodoethane in DMF in the open air (Scheme 4).
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Scheme 4. Synthesis of s-Triazine 6 with Herbicidal Activity
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To probe whether SET and radical intermediates are
involved in this visible-light-mediated [S + 1] annulation
reaction, a series of control experiments were conducted
(Scheme §). 2,2,6,6-Tetramethylpiperidine-N-oxyl (TEMPO),

Scheme S. Control Experiments
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an efficient free radical scavenger, was introduced under
otherwise identical conditions, and only a trace amount of 3a
was observed. In the presence of p-dinitrobenzene (p-DNB), a
SET inhibitor, the reaction was completely inhibited. Taken
together, these observations indicate that a mechanism
involving radical and SET pathways is most likely.

To gain insight into the mechanism of the visible-light-
mediated [S + 1] annulation, we performed UV-—vis
spectroscopic measurements on various combinations of 1a,
2a, and NaOH in DMF (Figure 2). Although 1a and 2a are
transparent to light, a distinct coloration can be observed upon
mixing of 1a and 2a in the presence of NaOH (Figure 2, top),
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Figure 2. (top) Photographs showin the formation of the colored
EDA complex (yellow) upon addition of 2a to a solution of la +
NaOH. (bottom) Optical absorption spectra in DMF: [1a + NaOH]
= 0.0001 M; [2a] = 0.002 M; [1a + 2a + NaOH] = 0.4 M.
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indicating the formation of the EDA complex. The absorption
band corresponding to the EDA complex red-shifts to the
visible region (blue line in Figure 2, bottom). In addition, a
quantum yield (@) of 0.03 was determined with the model
reaction (A 400 nm), which might indicate a radical
combination mechanism (see the Supporting Information).""

On the basis of the above results, a tandem radical—polar
crossover mechanism leading to s-triazines was proposed
(Scheme 6)."* (i) In the presence of base, a biguanide anion

Scheme 6. Proposed Mechanism for the Formation of s-
Triazine 3a
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intermediate I is generated, which interacts with perfluorobutyl
iodide to form EDA complex II. (ii) Photoirradiation affords
the excited triplet species I* (heavy-atom effect). (iii) Collapse
of complex IT* via SET leads to the generation of nitrogen
radical'® III and C,4Fol radical anion (solvent cage molecule).
(iv) C—N radical combination gives the key intermediate V,"*
which eliminates HF (in the presence of base), delivering
triazatriene VL. (v) 67 electrocyclization'® and subsequent
aromatization afford the final s-triazine 3a. In the visible-light-
mediated heterocycle construction cascade,'® triazines are
constructed in formal [S + 1] annulations by simultaneous
buildup of two C—N bonds. The role of dioxygen in the
reaction system was tentatively elucidated. On one hand,
singlet dioxygen might be generated through energy transfer
from the triplet excited state of II*.''® On the other hand,
singlet dioxygen is supposed to be beneficial for the SET
between biguanide anion and perfluoroalkyl halides, just like
an electron shuttle.'”*’

In summary, an unprecedented visible-light-promoted [S +
1] annulation between biguanides and perfluoroalkyl halides
under mild conditions (visible light, metal-free) has been
developed. 6-Perfluoroalkyl-s-triazines were assembled via a
sequence of SET, radical coupling, HF elimination, electro-
cyclization, and aromatization. Both visible light and dioxygen
in the air are favorable for the reaction. Consecutive energy
transfer and electron transfer events were suspected to be
involved in the reaction system, which not only helps to
elucidate the effect of dioxygen on the reaction but also makes
the chemistry more intriguing. These perfluoroalkyl-containing
s-triazines prepared in one pot might find vast applications in
the medicine and materials areas. This work demonstrates the
power and potential of electron-donor—acceptor complexes in
photosynthetic chemistry. The extension of this work to
polymer synthesis is currently in progress in our laboratory.
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